A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats

نویسندگان

  • Mohammed Saleem
  • Sandrine Morlot
  • Annika Hohendahl
  • John Manzi
  • Martin Lenz
  • Aurélien Roux
چکیده

In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane tension is a key determinant of bud morphology in clathrin-mediated endocytosis

In clathrin-mediated endocytosis (CME), clathrin and various adaptor proteins coat a patch of the plasma membrane, which is reshaped to form a budded vesicle. Experimental studies have demonstrated that elevated membrane tension can inhibit bud formation by a clathrin coat. In this study, we investigate the impact of membrane tension on the mechanics of membrane budding by simulating clathrin c...

متن کامل

Design principles for robust vesiculation in clathrin-mediated endocytosis.

A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advanta...

متن کامل

Modification of Thin Film Composite Nanofiltration Membrane using Silver Nanoparticles: Preparation, Characterization and Antibacterial Performance

This paper reports on preparation of polyamide membrane with addition of silver nanoparticles (AgNPs). AgNPs act as antibacterial agents that are less susceptible to membrane’s biofouling by interfacial polymerization (IP) method. AgNPs was synthesized via green route which has been reported previously. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Field emiss...

متن کامل

Clathrin Coats— Threads Laid Bare

vesicles, and possibly at other transport steps. Recent progress has provided insights into molecular interactions that govern clathrin coat dynamics. Now, ter Haar Babak Pishvaee and Gregory S. Payne Department of Biological Chemistry UCLA School of Medicine Los Angeles, California 90095 et al. (1998) report in this issue of Cell the crystal structure of the clathrin heavy chain amino-terminal...

متن کامل

Dynamin recruitment by clathrin coats: a physical step?

Recent structural findings have shown that dynamin, a cytosol protein playing a key-role in clathrin-mediated endocytosis, inserts partly within the lipid bilayer and tends to self-assemble around lipid tubules. Taking into account these observations, we make the hypothesis that individual membrane-inserted dynamins imprint a local cylindrical curvature to the membrane. This imprint may give ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015